UP - PGT CHEMISTRY

PGT | GIC | KVS | NVS | BPSC | DSSSB

The halogen having metallic character is

1.

	(a) Bromine	(b) Chlorine	(c) Iodine	(d) Fluorine					
2.	The cell constan	nt of a conductivity	cell						
	(a) Remains constant for a cell								
	(b) Changes with a change of electrolyte								
	(c) Changes with	h change in temperat	ure						
		h a change of concer		yte					
3.	When the salt b	oridge is removed fi	rom a cell, its volt	age					
	(a) Will increase	·	(b) Will decrea	ase to zero					
	(c) Will decrease	e to half	(d) Will not ch	nange					
4.	In Fe(CO) ₅ , the	Fe-C bond possess	es						
	(a) pi character		(b) Sigma chai	racter					
	(c) Ionic charact	er	(d) Both sigma	a and pi characters					
5.	Which one of th	e following elements	s shows the maxin	num number of different oxidatio	n				
	states in its con	ipound?							
	(a) Am	(b) Cd	(c) Eu	(c) La					
6.	The oxidation s	tate of oxygen in O							
	(a) +1	(b) +2	(c) +4	(d) -2					
7.	In a crystal, ato	oms are located at t	he positions of						
	(a) Maximum po		(b) Minimum potential energy						
	(c) Zero potentia	al energy	(d) Indefinite j	potential energy					
8.	Wilson's diseas								
	* *	nulation of Calcium	•						
		mulation of Copper i nulation of Selenium	•						
	* *	nulation of Vanadius	•						
	() =								
			(1)						

		SATANAIII —					
-		(c) Digestion	(d) Amalgamation				
The decreasing a	order of boiling poin	ts of allyvl halidad	s is				
_							
		(d) RCl $>$ RF $>$					
LaH, 76 is an exa	mple of						
•		(b) Metallic hyd					
(c) Covalent hydr	ides	(d) Ionic hydrid	es				
What is the ratio	of the atomic radius	of the 5 th orbit in	n chlorine atom and 3rd orbit in				
Helium atom?							
(a) 153:50	(b) 50:153	(c) 153:100	(d) 100:153				
The major produ	act of following reac	tion is R—C=	$N \xrightarrow{\text{(i) AlH } (iBu)_2} ?$				
(a) RCHO	(b) RCONH ₂	(c) RCOOH	(d) RCH ₂ NH ₂				
When more and more water is diluted with acids its H ⁺ ion concentration will							
		· /					
(c) Remains the s	ame	(d) Depends on	the type of acids				
From the following, which is more covalent?							
(a) Al_2S_3	(b) AlN	$(c) Al_2Cl_6$	$(d) Al_2O_3$				
Using VSEPR m	odel, the shape of the	following molec	ules IF ₅ ²⁻ (A), XeF ₄ (B), IO ₃ ⁻ (C),				
BrF ₃ (D) are							
(a) (A) pentagon shape, (B) square planar, (C) trigonal pyramid, (D) T-shape							
(b) (A) trigonal bipyramid, (B) square planar, (C) trigonal pyramid, (D) T-shape							
(c) (A) square pyramid, (B) tetrahedral, (C) tigonal pyramid, (D) planar							
(d) (A) pentagonal pyramid, (B) tetrahedral, (C) trigonal pyramid, (D) Planar							
Calculate the ion	nic strength of 0.2 M	solution of Calci	ium chloride?				
(a) 0.9 M	=						
	(a) Separation The decreasing of (a) RF > RCl > R (c) RI > RBr > RC (c) RI > RBr > RC (d) Molecular hydromatom (e) Covalent hydromatom (e) Covalent hydromatom (fig. 153:50) The major product (fig. 16) RCHO When more and (fig. 16) RCHO When more and (fig. 16) Remains the second (fig. 16) Remains the se	Electrophoresis refers to: (a) Separation (b) Identification The decreasing order of boiling point (a) RF > RCl > RBr > RI (c) RI > RBr > RCl > RF LaH _{2.76} is an example of (a) Molecular hydrides (c) Covalent hydrides What is the ratio of the atomic radius Helium atom? (a) 153:50 (b) 50:153 The major product of following react (a) RCHO (b) RCONH ₂ When more and more water is dilute (a) Increase (c) Remains the same From the following, which is more constant to the same From the following, which is more constant to the same From the following, which is more constant to the same (a) Al ₂ S ₃ (b) AlN Using VSEPR model, the shape of the BrF ₃ (D) are (a) (A) pentagon shape, (B) square plant (b) (A) trigonal bipyramid, (B) square plant (c) (A) square pyramid, (B) tetrahedral (d) (A) pentagonal pyramid, (B) tetrahedral (d) (A) pentagonal pyramid, (B) tetrahedral (d) (A) pentagonal pyramid, (B) tetrahedral (d) (Example 1) tetrahedral (d) (Example 2) tetrahedral (d) (Example 3) tetrahedral (d) (Example 4) tetrahedral	(a) Separation (b) Identification (c) Digestion The decreasing order of boiling points of alkyl halide (a) RF > RCl > RBr > RI (b) RBr > RCl > (c) RI > RBr > RCl > RF (d) RCl > RF > (d) Ionic hydrides (e) Covalent hydrides (b) Metallic hydrides (f) Covalent hydrides (d) Ionic hydrides (g) Lonic hydrides (d) Ionic hydrides (g) Lonic hydrides (e) Lonic hydrides (e) Remains of the state atomic radius of the Sth orbit in Helium atom? (g) Lonic hydrides (e) Lonic hydrides (e) Remains reaction is R—C (a) RCHO (b) RCONH ₂ (c) RCOOH When more and more water is diluted with acids its Helium atoms (e) Remains the same (d) Depends on Remains the same (e) Al ₂ S ₃ (b) AlN (e) Al ₂ Cl ₆ Using VSEPR model, the shape of the following molectory at the state of the following mole				

18.	What is the value of rate constant k if the value of the activation energy E_a and the frequency factor A are 49 kJ/mol and 9×10^{10} s ⁻¹ respectively? (T = 313 K)						
		(b) $9 \times 10^2 \text{s}^{-1}$					
19.				$[C_{12}H_{22}O_{11}]$ [H ₂ O]. Find the 0.032 s ⁻¹ and rate constant k =			
	(a) 5.8 M	(b) 6 M	(c) 6.2 M	(d) 6.4 M			
20.	Which of the me	ntioned relation is	not correct?				
	(a) A = U - TS	(b) $H = G + PV$	(c) G = H - TS	(d) $S = dQ/T$			
21.	[Zr(CH ₃) ₆] exists	s in:					
	(a) Octahedral ge	ometry	(b) Trigonal prismatic geometry				
	(c) Square pyramidal geometry (d) Distorted trigonal bipyramidal geometry						
22.	The complex $[\mathrm{Co}(\mathrm{H_2O})_6]^{3+}$ absorbs the wavelength of light corresponding to orange colour. Predict the color of the coordination compound based on this information.						
	(a) Red	(b) Yellow	(c) Blue	(d) Colourless			
23.	As the crystal field splitting energy in octahedral field increases, the wavelength of light absorbed						
	(a) Increases		(b) Decreases				
	(c) Remains the s	ame	(d) May increase	or decrease			
24.	If Pt in PtCl ₄ .2HCl has a secondary valence of 6, how many moles of AgCl will 1 mol of						
	the compound p	recipitate with exce	ess AgNO ₃ ?				
	(a) 0	(b) 1	(c) 2	(d) 4			
25.	Which of the foll (a) Potassium alu: (c) Carnallite	lowing is a complex minium sulphate	(b) Ammonium in (d) Potassium fer				
	(c) Carnamic		(a) i otassium lei	Toeyamae			
26.	_	and which is more to e (b) Triphenylami		(d) p-Nitroaniline			

27.	The resistance of the cell containing KCl solution at 23°C was found to be 55 Ω . Its cell						
			ivity of KCl solutio				
	(b) 1.21×10^{-3}	(b) 1.12×10^{-2}	(c) 1.12×10^{-3}	(d) 1.21×10^{-2}			
28.	Molar conductivi	ties $\left(\Lambda_{\mathrm{m}}^{\mathrm{o}}\right)$ at infinit	te dilution of NaCl,	HCl and CH ₃ COONa are 126.4,			
	425.9 and 91.0 S	cm ² mol ⁻¹ respectiv	vely. $\Lambda_{\rm m}^{\rm o}$ for ${\rm CH_3C}$	OOH will be			
	(a) 425.5 S cm ² m	ol^{-1}	(b) 180.5 S cm ² 1	mol^{-1}			
	(c) 290.85 S cm ² 1	nol^{-1}	(d) 390.5 S cm ² mol ⁻¹				
29.	Which of the fol chloride from an		nt used in the preparation of benzene diazonium				
	(a) Sodium hydroxide		(b) Sodium chlor				
	(c) Sodium nitrite		(d) Sodium nitrate				
30.	Which of the foreaction?	llowing carbonyl	compounds can b	e prepared from Rosenmund			
	(a) Methanal	(b) Acetone	(c) Butanone	(d) Benzaldehyde			
31.	_	of a first order ron of the reaction w	_	e in 32 min. The time taken in			
	(a) 48 min	(b) 52 min	(c) 56 min	(d) 44 min			
32.	Which of the foll	owing reactions do	oes not give benzalo	dehyde?			
	(a) Rosenmund re	action	(b) Etard reaction				
	(c) Gatterman-Ko	ch reaction	(d) Friedel-Craft acylation reaction				
33.		omes 200 K. If C _v	_	o reversible compression till its alculate $\Delta~U$ and $\Delta~PV$ for this			
	(a) Δ U=2.8 kJ; Δ		(b) Δ U=14 J; Δ	I(PV) = 0.8 J			
	(c) Δ U=14 kJ; Δ	` '	(d) Δ U=14 kJ;				
34.	Ln ²⁺ ions are la compounds are d		le Ln ³⁺ ions are n	ot colored. The color of Ln ²⁺			
	(a) $4f \rightarrow 5d$		(b) $4f \rightarrow 4f$				

	(c) Charge transfe	er from fiquid to metal	1 10n	(d) $5d \rightarrow 5d$ transition				
35.		ntropy for the fusion of fusion for ice = 6.0	kJ mol ⁻¹]	s [melting point ice = 273 K,				
	(a) 11.73 JK ⁻¹ mo		(b) 18.84 JK ⁻¹ mo					
	(c) $21.97 \text{ JK}^{-1} \text{ mo}$	ol^{-1}	(d) 24.47 JK ⁻¹ mo	1—1				
36.			•	This is high spin complex. The				
	(a) Laporte rule	ransition in the visib	le region is due to t	oreaking of				
	` ' -	mmla (a. va and u. v	y mot allowed)					
		on rule $(g \rightarrow g \text{ and } u \rightarrow g a$		1.1				
	` ' -	rule (spin of the elect	tron cannot be chang	ged during transition)				
	(d) All the above	three rules						
37.	Which one of the	e following pair show	vs variable valence	?				
	(a) Zr, Ti	(b) Bi, In	(c) Lu, Gd	(d) Pd, Cd				
38.	"Yellow when he	ot and white when o	cold" is one of the	characteristics observed for				
	ZnO. It is due to	:						
	(a) Distortions	(b) Cation defects	(c) Anion defects	(d) Deformations				
39.	A compound is formed by atoms of elements A occupying the corners of the unit cell and an atom of element B present at the center of the unit cell. Deduce the formula of the compound.							
	(a) AB_2	(b) AB_3	(c) AB ₄	(d) AB				
40.	Which of the foll electrolytes?	owing statements is o	correct regarding t	he conductivity of solutions of				
	(a) It is independent of the size of the ions							
	(b) It is independent of the viscosity of the solution							
	(c) It depends on the salvation of ions present in solution							
	(d) It decreases w	ith temperature						
41.	S	tion, DH = 35.5 kJ r		$6~\mathrm{J~K^{-1}~mol^{-1}}.$ The reaction is				

	(a) $T > 425 \text{ K}$	(b) All temperatu	re (c) T > 298 K	(d) $T < 425 K$	
•	Which of the follo	wing is ionic mob	ility independent or	n?	
	(a) Size of ion				
	(b) Charge on ion(c) Distance of separate	aration between the	e electrodes		
	(d) Concentration of		cicciodes		
	When CO ₂ is intr	oduced into aera	ted drinks and seal	ed, what is the nature of the	
	graph between pa	rtial pressure of C	CO_{2} and its concenti	ration in the drink?	
	(a) Exponentially is	ncreasing	(b) Positive slope		
	(c) Negative slope		(d) Constant		
	What is the concer	ntration of N ₂ in a	fresh water stream	in equilibrium with air at 298	
	K and 1 atmosphe	ere? Given the val	ue of K_H for $N_2 = 0.0$	00060 mole/kg bar.	
	(a) 0.0474 g/kg	(b) 0.0005 g/kg	(c) 1316.7 g/kg	(d) 13.3 g/kg	
	Addition of bismu	th chloride to exc	ess of water produc	es:	
	(a) Clear solution	(b) Yellow solution	on (c) White precipit	ate (d) Orange red precipitate	
	When phenol is tr	eated with excess	bromine water it gi	ves	
	(a) m-bromophenol	l	(b) o,p-bromophenol		
	(c) 2,4-dibromophe	enol	(d) 2,4,6-tribromophenol		
	Which of the follo	wing is formed w	hen glycerol is heat	ed with oxalic acid at 503K?	
	(a) Glyceric acid	(b) Acrolein	(c) Allyl alcohol	(d) Methanoic acid	
	Which of the follo	wing isomeric alc	ohols is the most so	luble in water?	
	(a) n-Butyl alcohol	(b) Isobutyl alcol	nol(c) sec-Butyl alco	hol (d) tert-Butyl alcohol	

(b) Concentration of ligand

(d) Temperature of the reaction

(a) Concentration of metal ion

(c) Nature of buffer

(a) 9

(b) 6

(c) 7

(d) 8

51. Which reagent is used for detecting Ni²⁺ ions in solution?

(a) EDTA

(b) Dimethylglyoxime

(c) α -nitroso- α -naphthol

(d) Cupron

52. How many geometrical isomers are possible in $[Al(C_2O_4)_3]^{3-2}$?

(a) 0

(b) 2

(c) 3

(d) 4

53. Which dye are leather used for dyeing

(a) Vat dye

(b) Tryarylmethane dye

(c) Mordont dye

(d) Indican dye

54. Which one of the following statements is FALSE?

(a) In an octahedral crystal field, the d electrons on a metal ion occupy the e_g set of orbital's before they occupy the t,g set of orbital's.

(b) Diamagnetic metal ions cannot have an odd number of electrons.

(c) Low spin complexes can be paramagnetic.

(d) In high spin octahedral complexes, octahedral is less than the electron pairing energy, and is relatively very small.

55. The correct spinel structure of Co₃O₄ is:

(a) $(Co^{2+})_t (2Co^{3+})_o O_4$

(b) $(Co^{3+})_t (2Co^{2+} Co^{3+})_o O_4$

(c) $(Co^{2+}Co^{3+})_{t}Co^{3+})_{0}O_{4}$

(d) $(2\text{Co}^{3+})_t (\text{Co}^{2+})_o O_4$

56. What type of interparticle forces holds liquid N, together?

(a) Ionic bonding

(b) London forces

(c) Hydrogen bonding

(d) Dipole-dipole interaction

57. Which of the following are aromatic?

2.

3. ()

5.

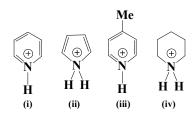
6.

7.

(a) 7, 1, 3, 5, 2

(b) 7, 1, 4, 5, 3

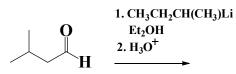
(c) 6, 1, 3, 5, 2


(d) 6, 7, 1, 3, 5

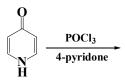
58. Which of the following is the most basic oxide?

THE RASAYANAM

- (a) $N_{2}O_{3}$
- (b) $N_{2}O_{5}$
- (c) P_4O_6
- (d) Bi₂O₅


59. The correct order of acidity among

- (a) (i) \leq (ii) \leq (iv)
- (b) (iv) < (iii) < (i) < (ii)
- (c) (ii) < (i) < (iii) < (iv)
- (d) (ii) < (iv) < (i) < (iii)
- 60. Calculate the pH of a solution prepared by mixing 300 mL of 0.10 M HF and 200 mL of 0.10 M KOH.
 - (a) 2.82
- (b) 2.96
- (c) 3.32
- (d) 3.44
- 61. What is the reduction potential for the half-reaction at 25°C:


 $Al^{3+} + 3e^{-} \rightarrow Al$, if $[Al^{3+}] = 0.10 \text{ M}$ and $E^{0} = -1.66 \text{ V}$?

- (a) -1.84 V
- (b) -1.60 V
- (c) -1.68 V
- (d) -1.66 V
- 62. The P⁵ electronic configuration is equivalent to the term:
 - (a) ³P
- (b) ²P
- (c) ${}^{3}F$
- (d) 4P
- 63. Which one molecule does not undergo hydrolysis?
 - (a) TeF₆
- (b) SeF₆
- (c) SiCl₄
- (d) SnCl₄
- 64. Which of the following is the major organic product obtained from the following reaction?

- (a) 3,5-dimethyl-3-heptanol
- (b) 3,5-dimethyl-4-heptanol
- (c) 4,7-dimethyl-4-heptanol
- (d) 2,4-dimethyl-4-heptanol

65. What will be the product of the following reaction?

(a) 3-chloropyridine

- (b) 2-dichloropyridine
- (c) 3,5-dichloropyridine
- (d) 2,5-dichloropyridine
- 66. Match List (I) with List (II):

()	()		
<u> List (I)</u>	List (II)	List (I)	List (II)
P. Claisen condensation	1. Nitrene	Q. Friedal carft	2. Free redical
R. Hofmann	3. Carbanion	S. Allylic bromination	4. Arenium ion
Choose the correct option	n:		
(a) P-3, Q-4, R-2, S-1	(1	b) P-2, Q-3, R-4, S-1	
(c) P-2, Q-3, R-1, S-4	(6	d) P-3, Q-4, R-1, S-2	

- **67.** What will be the reactivity of chlorobenzene in an electrophilic substitution reaction with benzene?
 - (a) Reacts very slowly than benzene
- (b) Reacts in the same way as benzene
- (c) Reacts faster than benzene
- (d) Does not react with benzene
- **68.** How many enantiomers are there of the molecule shown below?

- (a) 6
- (b) 2
- (c) 0
- (d) 1
- **69.** Which of the following is not true of enantiomers?
 - (a) Boiling point
- (b) Melting point (c) Specific rotation(d) Density
- **70.** What is the relationship between the two groups in the following molecules?

- (a) They are equatorial to one another (b) They are axial to one another

-THE RASAYANAM -

- (c) They are cis to one another
- (d) They are trans to one another
- 71. **Product of the following reaction is:**

$$\begin{array}{c}
OH \\
\hline
 H_2O_2, OH
\end{array}$$
CHO

(a) Catechol

S. E¹CB

4. Carbocation intermediate

- (b) Salicylic acid (c) Phthalaldehyde (d) Salicyl alcohol
- 72. Match List (I) with List (II):

<u>List (I)</u>	List (II)
$\mathbf{P.} \mathbf{S}_{2}^{N}$	1. Walden inversion
$\mathbf{Q.}~\mathbf{S}^{\mathrm{N}}_{~1}$	2. Carbanion intermediate
$\mathbf{R.} \; \mathrm{E^2}$	3. Antiperiplaner configurations

Codes:-

73. The optically active stereoisomer of the following compound is

$$(a) \xrightarrow{OH} CH_3$$

$$(b) \xrightarrow{OH} CH_3$$

$$(c) \xrightarrow{OH} CH_3$$

$$(d) \xrightarrow{OH} CH_3$$

- 74. Which among the following is a powerful oxidizer?
 - (a) F,
- (b) Cl,
- (c) Br,
- $(d) I_{2}$
- **75.** Which of the following biologically important coordination compounds has a magnesium central atom?

- PGT | GIC | KVS | NVS | BPSC | DSSSB -(a) Chlorophyll (d) Carboxypeptidase-A (b) Haemoglobin (c) Vitamin B12 **76.** The coordination complex chloridotris (triphenylphosphine) rhodium (I) is used in the hydrogenation of alkenes. It is also known as catalyst. (d) Ziegler-Natta (a) Grubb (b) Pearlman (c) Wilkinson The structure of hyponitrous acid molecule (H,N,O,) is 77. (b) Bent (type) (a) Linear (A-B-C-D type) (d) Triangular ((c) Square planar (**78.** Consider the following statements about methylene: 1. Methylene is formed by the photolysis of diazomethane. 2. Methylene can exist in two different forms, the singlet and triplet states. **3.** Singlet methylene is a diradical and stable than the triplet state. **4.** When methylene is reacted in the presence of alkenes then cyclpropane are formed. Which of the statements given above are correct? (a) 1, 2 and 4 (b) 1, 2 and 3 (c) 3 and 4 (d) 1, 3 and 4 **79.** What is the product of Clemmensen reduction on acetophenone? (a) Benzaldehyde (b) Methyl benzene (c) Ethyl benzene (d) Benzophenone **80.** Which of the following is Tollen's reagent? (a) Ammoniacal silver nitrate solution (b) Aqueous copper sulphate (c) Alkaline sodium potassium tartarate (d) Mixture of sodium carbonate, sodium citrate and Cu²⁺ complex The major product of the reaction $\stackrel{\text{HBr}}{\longrightarrow}$ is 81. $\nearrow_{\mathsf{Rr}}(\mathsf{c})$

82. Sanger's method is used to identify

- (a) C-terminal amino acid
- (b) N-terminal amino acid

(c) Side chain

- (d) Molecular weight of protein
- (11)

83. How many products are formed from the aldol condensation reaction between ethanal and propanal?

(a) 1

- (b) 2
- (c) 3
- (d) 4
- 84. The major product in the following reactions is:

85. Indicate the structures of X and Y in the following reaction

$$X \leftarrow \frac{\text{Na/EtOH}}{\text{Me}} = \frac{\text{(i) BH}_3}{\text{(ii) acetic acid}} Y$$

- (a) (E)-2-butene and (Z)-2-butene
- (b) (Z)-2-butene and (E)-2-butene
- (c) (E)-2-butene and 2-propanone
- (d) (Z)-2-butene and 2-propanone
- 86. How many non-equivalent protons are present in CH₃CHClCH₂CONH₃?

(a) 6

- (b) 5
- (c) 4
- (d) 3
- 87. Which of the following is associated with decrease in pK_b value of amines?
 - (a) Increase in acidic strength
- (b) Increase in basic strength
- (c) Better proton donation
- (d) Better electron acceptor
- 88. What is the correct order of basicity of aliphatic amines purely on the basis of salvation effect of the ammonium cation?

(a)
$$1^{\circ} > 2^{\circ} > 3^{\circ}$$

(b)
$$3^{\circ} > 2^{\circ} > 1^{\circ}$$
 (c) $2^{\circ} > 1^{\circ} > 3^{\circ}$

- (d) $2^{\circ} > 3^{\circ} > 1^{\circ}$
- 89. The basic strength of alkylamines does not depend on which of the following?
 - (a) Number or alkyl groups
- (b) Size of alkyl groups
- (c) Physical state of the amine
- (d) Presence of an aromatic ring

90. To check that a secondary alcohol has been completely oxidized to a ketone you can:

- (a) Check that the IR spectrum has absorptions at 3500 cm⁻¹ and 1650 cm⁻¹
- (b) Check that the IR spectrum has no absorptions around 3500 cm⁻¹
- (c) Check that the IR spectrum has no absorptions around 1650 cm⁻¹
- (d) Check that the IR spectrum no absorptions at 3500 cm⁻¹ and 1650 cm⁻¹

91. How many atoms surround the central atom present in a unit cell with the least free space available?

- (a) 4
- (b) 6
- (c) 8
- (d) 12

92. If a crystal lattice has 6 closed-pack spheres, what the number of tetrahedral voids in the lattice?

- (a) 12
- (b) 6
- (c) 36
- (d) 3

93. The pH of a 2M solution of a weak monobasic acid (HA) is 4. What is the value of the Van't Hoff factor?

- (a) 0.00005
- (b) 1.005
- (c) 1.0005
- (d) 1.00005

94. In the reaction

- (a) Michael addition followed by Aldol condensation
- (b) Aldol condensation followed by Michael addition
- (c) Mannich reaction
- (d) Knoevenagel reaction followed by Aldol condensation

95. Which of the following statements is NOT true in relation to the triple point on a single component phase diagram?

- (a) The point at which the solid, liquid and gaseous phases for a substance co-exist
- (b) The triple point exists at a single temperature and is independent of pressure
- (c) The triple point exists for a substance occurs at a specific temperature and pressure

		THE R	ASAYANAM=						
96.	(d) The system must be enclosed so that n vapour can escape The equilibrium constant for a cell reaction,								
	Cu(g) + $2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag$ (s) is 4×10^{16} . Find E° (cell) for the cell reaction								
	(a) 0.63 V		(c) 1.23 V	· · ·					
97.	Find the number	er of electrons transf	ferred in the equa	tion					
	Cu(g) + 2Ag + (a	$(q) \rightarrow Cu^{2+}(aq) + 2Ag$	s(s)						
	(a) 4	(b) 3	(c) 2	(d) 1					
98.		ollowing is not simil	ar between a firs	st order and pseudo first order					
	reaction?								
	` '	arity is one in both the first order kinetics	e reactions						
	(c) The unit of rate constant is s ⁻¹								
	` '	ne reaction depends or	nly on one reactant	•					
	(a) The face of the	or reaction depends of	my on one reactain	•					
99.	Which of the fo	Which of the following conditions would improve the yield of ammonia production							
	from Bosch-Ha	ber process?							
	(a) High tempera	ature, high pressure	(b) High temper	rature, low pressure					
	(c) Low tempera	ature, low pressure	(d) Low temperature, high pressure						
100.	Nitrogen in plants is taken in what form?								
	(a) Ammonia	(b) Amide	(c) Nitrate	(d) Nitrite					
101.	Which of the fo	ollowing vitamins are	e soluble in water	?					
	(a) A	(b) C	(c) D	(d) E					
102.	Two monosacch	narides are joined th	rough a b	ond to form a disaccharide.					
	(a) Ionic	(b) Peptide	(c) Glycosidic	(d) Phosphodiester					
103.	The configurati	ion description of the	e C2 epimer of D-	glucose is :					
	(a) 2R, 3S, 4R, 5	5R	(b) 2S, 3S, 4R,	5R					
	(c) 2S, 3R, 4S, 5	5R	(d) 2R, 3S, 4R,	5S					

104. The below reaction is an example of:

$$\begin{array}{ccc} CH_3 & \ominus \\ N & OH \\ CH_3 & CH_2 & CH_2 + H_3C - HC = CH_2 \\ \end{array}$$

- (a) Hofmann's rule (b) Saytzeff's rule (c) Cope reaction (d) Curtius reaction
- 105. Which of the following statements is incorrect with respect to physisorption?
 - (a) It is reversible

(b) It is spontaneous

(c) $\Delta H < 0$

- (d) $\Delta S > 0$
- 106. The standard potentials at 25°C for the half reactions given against them below

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

$$E^{o} = 0.762$$

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

 $E^{o} = 2.37$

When zinc dust is added to a solution of MgCl,

- (a) Magnesium is precipitated
- (b) Zinc dissolves in the solution
- (c) Zinc chloride is formed
- (d) No reaction takes place
- 107. What are the factors that determine an effective collision?
 - (a) Translational collision and energy of activation
 - (b) Threshold energy and proper orientation
 - (c) Proper orientation and steric bulk of the molecule
 - (d) Collision frequency, threshold energy and proper orientation
- 108. If complex [W(Cp),(CO),] follows 18e- rule. What is Hapticity of Cp?
 - (a) 5 and 5
- (b) 3 and 5
- (c) 3 and 3
- (d) 1 and 5
- 109. How many M M bonds are present in [C_DMo(CO₃)]²⁺?
 - (a) 1
- (b) 2
- (c) 0
- (d) 4
- 110. Which of the following is the incorrect statement about Zeise's salt?
 - (a) Zeise's salt is diamagnetic
 - (b) Oxidation state of Pt in Zeis's salt is +2
 - (c) All the Pt-Cl bond length in Zeise's salt are equal

	(d) C-C bond leng	th of ethylene moie	ty in Zeise's salt lor	nger than that of free ethylene			
111.	The reaction of et	hyl format with an	excess of CH ₃ MgI	followed by hydrolysis gives			
	(a) Ethanol		(b) n-propyl alcoho	ol			
	(c) Propanal		(d) Isopropyl alcoh	nol			
112.	The experimental	value of HE for Co	²⁺ ion is -540 kJ mo	l ⁻¹ . Theoretical value of HE is			
	-435.4 kJ mol ⁻¹ . W	hat will be the CF	SE? (approximate v	value)			
	(a) 8738 cm ⁻¹	(b) -9600 cm ⁻¹	(c) -1200 cm ⁻¹	(d) -114.6 cm ⁻¹			
113.	Rate constant for	the substitution rea	$\mathbf{C_4H_9Cl} + \mathbf{H_2Cl}$	O → C ₄ H ₉ OH + HCl increases			
	by a factor of 10.6 when the temperature is increased from 298 K to 308 K. Calculate						
	the activation ene	rgy of the reaction.					
	(a) 78.2 kJ mol ⁻¹	(b) 180 kJ mol ⁻¹	(c) 809 kJ mol ⁻¹	(d) 2.14 kJ mol ⁻¹			
114.	At 20°C, Ag+ion	concentration in a	saturated solution A	Ag_2CrO_4 in water is 1.5×10^{-4}			
	M. At 20°C, the solubility product of Ag ₂ CrO ₄ will be:						
	(a) 3.3750×10^{-12}	(b) 1.6875×10^{-10}	(c) 1.6875×10^{-12}	(d) 1.6875×10^{-11}			
115.	Of the following,	which is a low expa	nsion one?				
	(a) Sodalime	(b) Quartz	(c) Vycor	(d) Borosilicate			
116.	•	nics Gibb's function		l, isobaric, reversible process			
	(a) Varies linearly(c) Is zero		(b) Varies non-linearly(d) Remains constant but not zero				
117.	The compound wl	hich exhibits Jahn-'	Teller distortion in	their complexes is			
	(a) $[Mn(H_2O)_6]^{2+}$	(b) $[Mn(H_2O)_6]^{2+}$	(c) $[Cr(H_2O)_6]^{3+}$	(d) $[Fe(CN)_6]^{4-}$			
118.	d orbital used in b	oack donation of ele	ectron from $M \rightarrow L$	in [Fe(CN) ₆] ³⁻ is			
	(a) d_{xy} , d_{yz} , d_{zx}	(b) $d_{x^2-y^2}$	(c) d_{z^2}	(d) Cant be predicted			
119.	When aluminium	ions replace silicon	ions and silicon di	oxide what is it called?			

(a) Silicanes

(b) Silicates

(c) Silicons

(d) Zeolites

120. What miller indices plane is shown below?

- (a) (0 2 1)
- (b) (041)
- (c)(012)
- (d) (0 0 0)

121. What is the range of the oxidation states shown by nitrogen in its oxides?

- (a) +1 to +3
- (b) +2 to +4
- (c) +1 to +2
- (d) +1 to +5

122. Which of the following is the most popular oxoacid of sulfur?

(a) Sulfurous acid

- (b) Sulfuric acid
- (c) Peroxodisulfuric acid
- (d) Pyrosulfuric acid

123. What is the basicity of oleum?

- (a) 1
- (b) 7
- (c) 2
- (d) 3

124. Polarizing power of cation is inversely proportional to.

- (a) Magnitude of positive charge
- (b) Magnitude of negative charge
- (c) Size of positive charge
- (d) All of these

125. During compression of a spring, the work done is 10 kJ and 2 kJ escaped to the surrounding as heat. The change in internal energy ΔU (in kJ) is

- (a) 8
- (b) 12
- (c) 8
- (d) -12

ANSWER KEV

1	(c)	11 (b)	21 (b)	31 (a)	41 (a)	51 (b)	61 (c)	71 (a)	81 (b)	91 (d)	101(b)	111(d)	121(d)
2	(a)	12 (b)	22 (c)	32 (d)	42 (c)	52 (a)	62 (a)	72 (a)	82 (b)	92 (a)	102(c)	112(a)	122(b)
3	(b)	13 (a)	23 (b)	33 (c)	43 (b)	53 (b)	63 (b)	73 (b)	83 (d)	93 (d)	103(a)	113(b)	123(c)
4	(d)	14 (d)	24 (a)	34 (a)	44 (d)	54 (a)	64 (a)	74 (a)	84 (d)	94 (a)	104(a)	114(c)	124(c)
5	(a)	15 (c)	25 (d)	35 (c)	45 (a)	55 (a)	65 (b)	75 (a)	85 (a)	95 (d)	105(d)	115(b)	125(c)
6	(a)	16 (a)	26 (c)	36 (d)	46 (d)	56 (b)	66 (d)	76 (c)	86 (a)	96 (b)	106(d)	116(d)	
7	(b)	17 (c)	27 (b)	37 (a)	47 (c)	57 (d)	67 (a)	77 (b)	87 (b)	97 (c)	107(d)	117(d)	
8	(b)	18 (a)	28 (d)	38 (b)	48 (d)	58 (d)	68 (c)	78 (c)	88 (a)	98 (a)	108(b)	118(a)	
9	(a)	19 (d)	29 (c)	39 (d)	49 (a)	59 (b)	69 (c)	79 (c)	89 (d)	99 (d)	109(a)	119(d)	
10	(c)	20 (b)	30 (d)	40 (c)	50 (a)	60 (d)	70 (c)	80 (a)	90 (a)	100(c)	110(c)	120(a)	

Solution

- 1. (c) Halogen having metallic character I_2
- 2. (a) The cell constant of a conductivity all depends on Remain constant
 - * Cell constant $G^* = \frac{1}{A}$, where 1
 = length between the electrode A = area of electrode.
 - * Relation = [G.G* = k] So the cell constant only depends on distance between electrodes and area of electrodes.

(b) When salt bridge is removed from a cell, its voltage: - Will decrease to zero.

The function of salt bridge in an electrolyte cell is to maintain electrically neutrality in solutions and present voltage drop, but if we removed salt bridge, voltage decrease to zero.

4. (d) In Fe(Co)₅, the Fe–C bond possess = both σ and π character

So Fe–C has both sigma and pi bonds and there is $d\pi - P\pi$ metal and shows sigma bonding.

- 5. (a)
- 6. (a) Oxidation state of oxygen in O_2F_2 = we know oxidation state of F is 1. So 2x + 2(-1) = 0 2x - 2 = 0x = +1 Ans
- 7. **(b)** In a crystal, atoms are located at the position of:- **Minimum potential energy**. As we know when two atoms approaches each other, the potential energy gradually decrease and reaches a minimum value.
- 8. (b) Wilson's disease: Excess accumulation of copper in body
 Too much accumulation of copper,
 especially in the liner and brain.
 Our body needs a small amount of
 copper, but when high level of
 coppers increase in body, that causes
 life threatening organ damage.
- 9. (a) Electropharesis refer to –

 'Separation of charges'

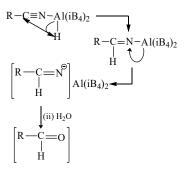
 Electrophoresis is the motion of charge dispersal particle or dissolved charge molecule relative to a fluid under the influence of spatially uniform electric field.
- 10. (c) Boiling points of Alkyl halide RI > RBr > RCl > RF

This is due to their polarity and strong dipole – dipole attractive interaction between haloalkane molecules.

Among isomeric Alkyl halides, the boiling point decreases with increase in branching in the alkyl group, because with branching the molecule attains a spherical shape with less surface area.

- 11. (b)
- 12. **(b)** Atomic radius \Rightarrow r = 0.529 $\frac{n^2}{Z}$

so
$$r \propto \frac{n^2}{Z}$$


so
$$\frac{r_{Cl}}{r_{He}} = \frac{n_{Cl}^2}{n_{He}^2} \times \frac{Z_{He}}{Z_{Cl}}$$

$$\frac{\mathrm{r_{Cl}}}{\mathrm{r_{He}}} = \frac{5^2}{3^2} \times \frac{2}{17} = \frac{50}{153}$$

so
$$r_{Cl}: r_{He} = 50:153$$

13. (a) $R - C \equiv N \xrightarrow{(i)AlH(B_4)_2} R - CHO$

Mech.
$$R-C\equiv N \xrightarrow{(i) Al-H-(iB_4)_2}$$

THE RASAYANAM

- 14. (d) According to the definition of Bronzed Lowry concept, Acids donates, H+ when we dilute it so are we increase concentration of water or dilute the acid, H+ concentrate increase.
- 15. (c) According to Fajan's Rule for covalent nature = cation's size decrease and Anion's size increase.
- 16. (a) $IF_5^{2-} \rightarrow 5\sigma$ and 2 L.P. $Z \rightarrow$

Pentagonal Shape

$$XeF_4 \rightarrow 4\sigma$$
 and 2 L.P. $Xe \rightarrow$

Squareplaner

$$IO_3^{\circ} \rightarrow 3\sigma$$
 and 1 L.P. $O = 0$

'Triangular Pyramid'

$$BrF_3 \rightarrow 3\sigma$$
 and 2 L.P. $F - Br$

 \rightarrow T-shape

17. (c) Ionic strength, $I = \frac{1}{2} \sum C_1 Z_1^2$, Where $C_i = \text{Concentration \& } Z_i = \text{Charge on species so for } \text{CaCl}_2 \rightleftharpoons \text{Ca}^{+2} + 2\text{Cl}^{\Theta}$

0.2 m (0.2)
$$\left[2 \times (0.2)\right]$$

 \downarrow \downarrow
 $Z = +2$ $Z = -1$

So
$$I = \frac{1}{2} \left[C_1 Z_1^2 + C_2 Z_2^2 + C_3 Z_3^2 + \dots \right]$$

 $I = \frac{1}{2} \left[0.2 \times (+2)^2 + (2 \times 0.2) \times (-1)^2 \right]$
 $\left[I = \frac{1}{2} \left[0.8 + 0.4 \right] = 0.6 \text{ m} \right]$

- 18. (a) given $E_a = 49 \text{ kJ} = 49 \times 10^3 \text{ Joule}$ $A = 9 \times 10^{10} \text{ sec}^{-1}$
- 19. (d) The given rate $R = K[C_{12}H_{22}O_{11}][H_2O]$ It is a pseudo order reaction of sucrose, so in these type of reaction, rate and order of reaction do not depend on the concentration of water. So It is a first order kinetic reaction.

 Given rate $R = 0.032 \text{ sec}^{-1}$, K = 0.005So $r = K.[C_{12}H_{22}O_{11}]$ 0.032 = 0.005(H) Let the conc. of $C_{12}H_{22}O_{11}$ is = H $H = \frac{0.032}{0.005} = \frac{32}{5} = 6.2$

- 20. (b) Themodynamic equation = Internal energy $U = [TdS PdV + \sum \mu_1 dN_1]$ Hetmholtz free energy A = U TSEnthalpy = H = U + PVGibbs free energy G = H TSEntropy $S = \frac{dQ}{T}$
- 21. **(b)** $\left[Zr(CH_3)_6 \right]$ exist in \rightarrow 'Trigonal Prismatic geometry'
- **22. (c)** When a compound absorbed any particular wavelength of a particular colour. Then it shows, its complementary colour.

<u>Colour cycle of complementary</u> colour

If compound absorbed

orange coloure, the colours of compound will be **Blue**.

23. (b) Increasing the energy of C.F.S. increase, wavelength of absorbe light decrece

$$: E = \frac{h.c}{\lambda} \to E \propto \frac{1}{\lambda}$$

24. (a) <u>Primary valancy</u>:- Valency out of coordination sphere.

Secondary valancy:- Valency inside coordination sphere. So PtCl₄, 2HCl =

have secondary valance '6'. So compound will be = $H_2[PtCl_6]$ or $[PtCl_6]^{2-}$

"Here we see, there is No 'Cl' atom outside of sphere so "Not any precipitate of AgCl will be found."

25. (d) Complex salts – are the salt have non-ion sable primary valency inside a coordination sphere –

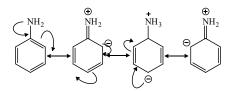
So in
$$K_2SO_4Al_2(SO_4)_3.24H_2O \rightleftharpoons$$

 $2K^+ + SO_4^{2-} + 2Al^{+3} + 3SO_4^{2-}$
 $Al + FeSO_4 \rightleftharpoons Al_2(SO_4)_3 + Fe$

Not form complex

Carnellite

$$\rightarrow$$
 KMgCl₃.6H₂O \rightleftharpoons K⁺ + Mg⁺² + 3Cl⁰


→ Not form complex

$$K_4 \lceil Fe(CN)_6 \rceil \rightleftharpoons 4K^{-1} - \lceil Fe(CN)_6 \rceil^{4-1}$$

Secondary valance is non-ionisable

So it is a complex salt

26. (c) Compound more basis than Aniline

If the lone pair of Nitrogen is in the conjugation of Benzene ring, than it

THE RASAYANAM =

is not fully available for donation of lone pair so it shows less basicity.

lone pair do not take part in conjugation so it is more basic then Aniline.

decrease

- 27. **(b)** given \rightarrow R = 55 Ω , cell constant

 G* = 0.616 cm⁻¹

 Conductivity of cell K = G.G, where $G = \frac{1}{R} \rightarrow \text{Resistance}$ So $K = \frac{G^*}{G} = \frac{0.616}{55} = 1.12 \times 10^{-2}$
- 28. (d) given $\lambda_{m(NaCl)}^{o} = 12.64 \, \text{Scm}^2 \, \text{mol}^{-1}$, $\lambda_{m(HCl)}^{o} = 425.9 \, \text{Scm}^2 \, \text{mol}^{-1}$, $\lambda_{m(CH_3COONa)}^{o} = 91.0 \, \text{Scm}^2 \, \text{mol}^{-1}$ the reaction will occure such as $\text{CH}_3\text{COOH} + \text{NaCl} \rightleftharpoons \text{CH}_3\text{COONa} + \text{HCl}$ According to kohlarausch law \rightarrow

$$\begin{split} & \left[\lambda_{\text{m(CH}_3\text{COOH)}} = \lambda_{\text{m(CH}_3\text{COONa)}} + \lambda_{\text{m(HCI)}} - \lambda_{\text{m(NaCI)}} \right] \\ & \lambda_{\text{m(CH}_3\text{COOH)}} = \left(91.0 + 425.9 \right) - 126.4 \\ & = 390.5 \, \text{Scm}^2 \, \text{mol}^{-1} \end{split}$$

Benzene diazonium chlonde Mechanism→

(1) NaNO₂ + HCl
$$\longrightarrow$$
 $N=0$

$$Zr \rightarrow +1 \text{ to } +4 \} \begin{cases} Pd \rightarrow +2, +4 \\ Ti \rightarrow +1 \text{ to } +4 \end{cases} \begin{cases} Pd \rightarrow +2, +4 \\ Cd \rightarrow +2 \text{ only} \end{cases}$$
$$\begin{cases} Lu \rightarrow +3 \text{ only} \\ Gd \rightarrow +3 \text{ only} \end{cases} & \begin{cases} Bi \rightarrow +3 \text{ only} \\ In \rightarrow +3 \text{ only} \end{cases}$$

30. (d) Rosanmond reaction:-

$$R \xrightarrow{\text{O}} \text{H}_2/\text{Pd}, \text{BaSO}_4 \xrightarrow{\text{O}} R \xrightarrow{\text{C}} \text{H} + \text{HC}$$

Mech:-

$$R \xrightarrow{\text{C}} \text{C1} \xrightarrow{\text{Pd} \atop \text{metal halogen} \atop \text{exchange}}} R \xrightarrow{\text{C}} \text{Pd} \xrightarrow{\text{Cl}} \\ H + H \\ O \\ R \xrightarrow{\text{C}} \text{H} + \text{Pd} + \text{HCl}$$

31. (a) for first kinetic \rightarrow $K = \frac{2.303}{t} \cdot \log \frac{[A_{\circ}] \rightarrow \text{Inital concentraction}}{[A] \rightarrow \text{Final concentration}}$

So When for 99% completion of reaction $\rightarrow [A_o] = 100$ (let) so [A] = 100 - 99 = 1

So
$$K = \frac{2.303}{32} \times \log \frac{100}{1} = \frac{2.303}{32} \times \log 10^2$$

= $\left[K = \frac{2.303 \times 2}{32}\right] \sec^{-1}$ (I)
 $\therefore \log 10^2 = 2 \log 10 \text{ and } \left[\log 10 = 1\right]$

32. (d) Friedel craft acylation:-

Always form keton/ ester but aldehyde not formed.

$$\mathbf{Rosanmond} \rightarrow \bigcirc^{0}_{\mathbb{C}_{\text{Cl}}} \xrightarrow{\mathrm{H}_{2}/\mathrm{Pd}, \, \mathrm{BaSO}_{4}} \bigcirc^{0}_{\mathbb{C}_{\mathrm{Cl}}}$$

Etard reac.
$$\rightarrow$$
 CrO_2Cl_2 CrO_2Cl_2

Gatter mann koh →

- 33. (c)
- 34. (a)
- 35. (c) given -

$$\Delta S = \frac{\Delta H_{fussion}}{T} = \frac{6 \times 10^3 \text{ J.mol}^{-1}}{273 \text{ K}}$$

$$= 21.97 \text{ J.K.}^{-1} \text{ mol}^{-1}$$

- **36. (d)** Any crystal shows colour, by following these selection rules (a)

 Lapart (-l = +1), (b) spin selection $\{-S = 0\}$.

 The compound $[Mn(H_2O)_6]^{+2}$ (d⁵) do transition by breaking there laws.
- **37. (a)** Both the Zr and Ti are the transition metal elements, these have rough surface, due to which, these shows variable valancy.
- 38. (b) The excess Zn⁺² ions moves to the interstitial state and electron to the neighboring interstitial sites. This give rise to colour hence, At high temperature It forms a non-stoichiometric compound so shows yellow colour and at low temperature white colour.

This type of Defect is known as – Cation defect (Generated due to Zn⁺² ions)

- 39. (d) : A is the corner so $\rightarrow A = 8 \times \frac{1}{8} = 1$ B is the body center $\rightarrow B = 1 \times 1 = 1$ Compound will be $\rightarrow [A_1B_1] = AB$
- **40. (c)** Solvation increase, conductivity decrease

THE RASAYANAM

- Size increase, conductivity decrease
- Viscosity increase, conductivity decrease
- Temperature increase, conductivity increase
- 41. (a) given $\Delta H = 35.5 \text{ kJ} = 35 \times 10^3 \text{ J mol}$ $\Delta S = 83.6, T = 9$ $\therefore [\Delta G = \Delta H T\Delta S], \text{ for spontaeous,}$ $\Delta G \text{ should be negative}$ $[\Delta G = 35.5 \times 10^3 83.6 \times T]$ $= [35500 T \times 83.6] \text{ from option; It}$ we put the temperature greater than $425, \text{ the we get } \Delta G = \text{Negative}].$
- 42. (c) Ionic mobility It depands on (1) size of ion, (2) charge on ions, (3) Nature of particle, (4) Concentration of electrolyte. But it is independent of the other ions present. It is also independent from the distance of separation between the electrode.
- 43. (b)
- 44. (d)
- 45. (c) $BiCl_3 + H_2O \rightleftharpoons BiOCl + 2HCl$ excess 'white ppt'(Bismuth oxychloride)

∴ It is a reverasible reaction - So $BiOCl + HCl \rightleftharpoons BiCl_3 + H_2O$ (a clear solution)

6. (d)
$$\xrightarrow{OH} \xrightarrow{Br_{2(excess)}} \xrightarrow{OH} \xrightarrow{Br} \xrightarrow{B$$

[2, 4, 6 T.B.P.]

(d)
$$CH_2-OH HO - C$$
 $CH - OH + HO - C$
 $CH_2OH O$
 $CH_2OH O$
 $CH_2-O - C$
 $CH_2OH O$
 CH_2OH
 CH_2OH

47.

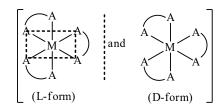
- **48. (d)** [Surface area decrease, solubility in water increase] so for a perticular volume, sphere has minimum surface area. So 3° Alcohol due to bulleyness, form aspherical shape. So these are moare soluble.
- 49. (a) EDTA complex metric titration is used to determine the concentration of metal ion is a sample.
 EDTA is a complex metric indicator made up of two amine group and Lewis bases (Carboxylic group)

EDTA, hexadented complex.

- 50. (a) In $[M(en)_2(C_2O_4)]C1$, where en \rightarrow bidented, $C_2O_4^{2-} \rightarrow$ bidented So C.N. $\rightarrow (2 \times 2 + 2) = 6$ O.S. $\rightarrow x - 2 - 1 = 0$ x = 3Total \rightarrow CN + OS = 3 + 6 = 9
- 51. (b) Reagent is used for the detecting Ni⁺² ions in solution **Dimethyl glyoxine**

$$\begin{bmatrix} CH_3 & N-OH \\ OH & CH_3 \end{bmatrix} DMG$$

52. (a) Geometrical Isomer in


Isomers.

$$\left[\operatorname{Al}(\operatorname{C}_{2}\operatorname{O}_{4})_{3}\right]^{3-}, \text{ It is a } \left[\operatorname{M}(\operatorname{AA})_{3}\right]$$

can not be show Geometrical

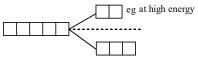
But It is optically active. Because all ligand are Identical and have same orientation around the metal ion that lead to a symmetric structure.

Optical Isomers

53. (b) Dye, which are used for leather dying is – Triethyl methane dye but for leather dying = Alcohol based Dying is the best.

Vat dye: These dyes are water insoluble, so cannot be used directly in the textiles.

We treat this dye with Na₂S₂O₄ in basic medium and **Levco compound**.


Eg:- Indigo, Anthraquinon, dye.

Moderant dye:- It is an intermediate compund, which is used for fixing of dye on the clothes, these are the groups, which makes the stable complexes with metal.

- * Hydroxide of Cr, Al, Fe and Co are
- Basic moderate.

THE RASAYANAM

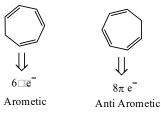
- * Tanin or tanin acid are acidic moderate.
- **54.** (a) In an octahedral crytal field =

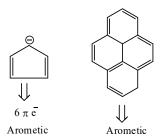
t2g at low energy

t₂g orbital are in lower energy level so the d-electron occupied t₂g set d-orbital.

55. (a) for spinel strecture = $Co_3O_4 \rightarrow Co_2^{+2}Co^{+3}O_3 \rightarrow Co^{+2}(2Co^{+3})O_3$

here $C_0^{+2} \rightarrow$ occupied tetrahedral void. $C_0^{+3} \rightarrow$ occupied octahedral void.

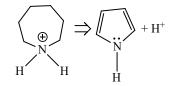

- **56.** (b)
- 57. (d)


 14-Anullene

 Arometic

 Due to big ring there will
 not any repultion between

 H-atom $2\pi e^{-}$ $(4n+2)e^{-}$ Not Follow
 Anti Arometic


H due to this 'H' repultion

→ moleucle is non planer so → Non

Aromatic

Aromatic → (I, III, V, VI)

- 58. (d)

Lone pair is not aviable for Donation so most acidic.

So order will be \rightarrow II > I > III > IV

60. (d) No. of H⁺ ion \rightarrow 0.1 × 300 × 10⁻³ {from HF}

No. of OH^{Θ} ion $\rightarrow 0.1 \times 200 \times 10^{-3}$ {from KOH}

After mixing, reminder H⁺ will be

 $\rightarrow H^{+} = (30 \times 10^{-3} - 20 \times 10^{-3})$

So concentration =

$$\frac{\text{moles of H}^+}{\text{total volume}} = \frac{10 \times 10^{-3}}{\left(300 + 200\right)}$$

$$\left[H^{+}\right] = \frac{10 \times 10^{-3}}{500} = 0.02 \times 10^{-3} = 2 \times 10^{-5}$$

pH will be
$$\rightarrow -\log H^+$$

$$= -\left[\log 2 \times 10^{-5}\right] = \left(5 - \log 2\right)$$

$$pH = 5 - 0.3010 = 4.69$$

61. (c)
$$Al^{+3} + 3e^{-} \rightarrow Al$$
, so

$$E = E^{\circ} - \frac{0.0591}{n} \cdot log \frac{[Al]}{[Al^{+3}]}$$

$$E = -1.66 - \frac{0.0591}{3} \cdot \log \frac{1}{(0.1)}$$

$$E = -1.66 - 0.0197$$

$$E = -1.6797 \approx -1.68 \text{ volt}$$

62. (b)
$$p^5 \longrightarrow \boxed{1 | 1 | 1 | 1}$$

$$S = +\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$$

$$S = \frac{1}{2}$$

spin multicity

$$(2S+1) = (2 \times \frac{1}{2} + 1) = 2$$

$$1 = 2 \times (+1) + 0 \times 2 + (+1) \times 1$$

$$\mathbf{l} = \mathbf{1} \to \mathbf{P} \quad \therefore \quad \frac{\mathbf{S} \quad \mathbf{P} \quad \mathbf{d} \quad \mathbf{f}}{\mathbf{0} \quad \mathbf{1} \quad \mathbf{2} \quad \mathbf{3}}$$

- 63. (b)
- 64. (a)
- 65. (b)
- 66. (d) Claisen condensation:-

Due to E.N. of Cl, it decrease the electron density on benzene, than attack of electrophile will not be easy, or the presence of Cl-atom decrease the reactivity of compound.

- 68. (c) HO, OH HO, OH (II)
 - both the compound are super impossible to each other so both are identical. So [No. of Enantiomer = 0]
- 69. (c) Two enntiomers have similar property of → Boiling point,
 Similar melting point & same density.

(27)

THE RASAYANAM =

"But they are differ in only optical specific rotation."

- 70. (c) \longrightarrow Both Cl and Br are "Cis to each other"
- 71. (a)

 OH

 H2O2, OH

 OH

 Workup

 OH

 Catechol
- 72. (a) SN² → Walden inversion
 SN¹ → Carbocation intermodiate
 E² → Carbanion Intermediate
 formed
 E¹CB → Antiperiplaner
 configuration
- 73. **(b)** CH_3 There is no. plane of symmetry in this molecule so it is optically active.

76. (c) $Rh(PPh_3)_3 Cl \rightarrow is a wilkinson catalyst$

$$\bigcap_{Cl} P(C_4)_3 \\ \downarrow \\ P(C_4)_3$$
 Ph Grubb's synthens

 $TiCl_4 + Al(C_2H_5)_3 \rightarrow Zeigleer natta$ catalyst

 $Pd(OH)_2 / C \rightarrow Pearlman's catalyst$

- 77. **(b)** $H_2N_2O_2 \rightarrow \ddot{O}H$ So it can be represent as (bent shape)
- 78. (a) About methylene \rightarrow CH,

$$\rightarrow H \overset{\text{H}}{\sim} - \overset{\oplus}{N} \equiv N \xrightarrow{\text{CH}_2 + N_2 \text{ increase}}$$

→ If find in two form, singlet & triplet in which singlet is less stable than triplet.

$$+ CH_2 \longrightarrow CH_2$$

It form 'Cyclopropane'

79. (c) Demention Reduction \rightarrow

80. (a) Tollen reagent:- Amoniated silver nitrate solution $(Ag_2O + NaNO_3)$.

82. (b) Sanger's method:- It is used to identified N-Terminal amino acid. Basically it is used in DNA.

83. (d)
$$CH_3 - CH_2O + CH_3 - CH_2 - CHO \rightarrow$$

OH

 $H_3C - C - CH_2 - CHO + H_3C - H_2C - C - CH - CHO$

H

OH

 $H_3C - C - CH - CHO + H_3C - H_2C - C - CH_2 - CHO$

H

OH

 $H_3C - C - CH - CHO + H_3C - H_2C - C - CH_2 - CHO$

H

 $CH_3 - CH_2O + CHO + H_3C - H_2C - C - CH_2 - CHO$

H

(III)

(IV)

- 84. (d)
- 85. (a)
- 86. (a) Non equivalent protons in \rightarrow H H H O

 | | | | ||

 H C C C C NH2

87. (b)
$$P^{k_b} \propto \frac{1}{\text{Basisity}}$$
 so P^{k_b} decrease, Basisity increase

- 88. (a) Order of basisity on the basis of solvation effect $\left[1^{\circ} > 2^{\circ} > 3^{\circ}\right]$ amines
- 89. (d)
- **90. (a)** To check a secondry alcohol has been completly oxidies to keton -

R-CH-OH
$$R^{-1}$$
 \longrightarrow IR range =

 3600 cm^{-1}

R-C=O
 R^{-1} \longrightarrow IR range = 1708 - 1720

cm⁻¹ so we should check the IR

spectrum has absorption 3500 cm⁻¹
and 1600 cm⁻¹.

- 91. (d) For least free space → Central Atom is surrounding by 12 atom in FCC unit.
- 92. (a) Z = 6Tetrahedral void = $2Z = 2 \times 6 = 12$ Octahedral void = Z = 6
- **93.** (d) given \rightarrow pH = 4, $[H^+] = 10^{-4}$

(29)

i =
$$\frac{\text{amount after time t (total)}}{\text{amount present initally}} = \frac{(2+\infty)}{2} = \left(1+\frac{\infty}{2}\right)$$

: It is given $[H^+] = \infty = 10^{-4}$ so

$$i = \left(1 + \frac{10^{-4}}{2}\right) = \left(1 + 5 \times 10^{-5}\right)$$
$$= \left(1 + 0.00005\right)$$

i = 1.00005

95. **(b)** Cu + 2Ag⁺
$$\rightarrow$$
 Cu⁺² + 2Ag, n =

2 e⁻

transfer so At

equilibrium \rightarrow E° = $\frac{0.0593}{n}$.log K_c

E° = $\frac{0.0593}{2} \times \{ \log 4 \times 10^{16} \}$

= $\frac{0.0593}{2} \{ \log 10^{16} + \log 4 \}$

$$E^{\circ} = \frac{0.0593}{2} \times \{16 + 2\log 2\}$$
$$= \frac{0.0593}{2} (16 + 2 \times 0.3010) = 0.49V$$

96. (d)

97. (c) :
$$Cu \rightarrow Cu^{+2} + 2e$$

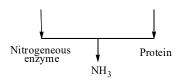
 $2Ag^{+} + 2e \rightarrow 2Ag$
 $Cu + 2Ag^{+} \rightarrow Cu^{+2} + 2Ag$, here we see, number of transfer electron are = 2

- 98. (a) In Pseudo order kinetic
 - → Molecularity is more than one.
 - → Follow first order kinetics so

value of K is in sec-1

→ rate depand only on one reactant

$$\begin{aligned} \textbf{Reaction-} & C_{12}H_{22}O_{11} + H_2O \Longrightarrow C_6H_{12}O_{16} + C_6H_{12}O_6 \\ & \text{glucose} \end{aligned}$$

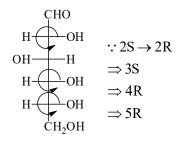

It is a Pseudo order reaction Rate $\infty [C_{12}H_{22}O_{11}]$

- (a) Habern process of NH₃ formation → N₂ + 3H₂ (200-400 atm / 500° C)
 It occuse in high temperature and high pressure. But in by the Le Chaterleir → NH₃ production is favour by Low temperature and High pressure.
- 100. (c) In plants, N_2 is in the form of \rightarrow Nitrate (NO_3^0) .

Nitrogen fixation in plants →

- (1) $N_2 \rightarrow NO_2^{\Theta}$ (nitrite)
- (2) $NO_2^{\Theta} \rightarrow NO_3^{\Theta}$ (nitrate)

$$(3) \begin{array}{c} NO_3^{\ \theta} \xrightarrow{absorbe} NO_3^{\ \theta} \\ (soil) & (plant roots) \end{array}$$


- **101. (b)** FAT soluble vitamins \rightarrow A,D,E,K Water soluble vitamins \rightarrow B and C
- **102.** (c) <u>In a disaccharide</u> → two, monosaccharide are attached with Glycosidic linkage.

In Sucrose $\rightarrow \infty$,1,2 glycosidic linkage

In Lactose $\rightarrow \beta$ -1,4 glycosidic linkage

In Maltose $\rightarrow \infty$ -1,4 glycosidic linkage

103. (a) D-glucose \rightarrow

 \because 4th group is in Horigontal so $S \rightarrow R$

- **104.** (a) Hoffmann Rule → Least substituted olefin is genrally formed as major product.
- 105. (d) In physisorption \rightarrow
 - It is spontaneous $\{\Delta G < 0\}$
 - It is reversible
 - ΔH < 0
 - $\Delta S > 0$
- 106. (d) For an spontaneous reaction

$$\Delta G = Negative$$

$$\therefore \Delta G = -nF E_{cell}^{o}$$

 \therefore for spontaneous reaction E_{cell}° = positive

- 107. (d) Factros, that determine an effective collosion \rightarrow
 - Collision frequency
 - Thresold energy
 - Proper orientation
- 108. (b) $\left[\text{W(Cp)}_2 \left(\text{CO} \right)_2 \right] \rightarrow \text{It follow } 18 \,\text{e}^{-1}$ Rule so let hepticity both Cp is ('x' and 'y') so VE = $6 + (x + y) + 4 = 18 \,\text{e}^{-1}$

$$x + y = 8$$

so hepticity should be \rightarrow 3 and 5

109. (a) Number of M-M bond in \rightarrow

$$\left[C_{p}M_{o}\left(CO\right)_{3}\right]_{2}$$

M-M bond
$$\rightarrow \frac{18n - VE}{2}$$

THE RASAYANAM

$$=\frac{(18\times2)-(12+10+12)}{2}=\frac{36-34}{2}$$

M - M bond = 1

- 110. (c) Zeise salt:- $K[PtCl_3.C_2H_4]$
 - It is diamagnetic in Nature
 - Pt is in +2 O.S.
 - All PtCl bond are not equal

111. (d)
$$H - C - O - C_2H_3 + CH_3 - MgI$$
 $O = MgI$
 $H - C - COC_2H$
 CH_3
 CH_3

[Experimental hydration energy = theoritical or expected hydration energy + CFSC]

112. (a) [Exp. hydration energy = theoritical or expected hydration energy + CFSE]

'Isopropyl alcohol'

CFSE =
$$-540 - (-435.4)$$

= $-104.6 \text{ kJ mol}^{-1} = -104.6 \times 10^3 \text{ J mol}^{-1}$

:
$$E = \frac{hc}{\lambda} \rightarrow \frac{104.6 \times 10^{-3} \text{ Jule}}{6.023 \times 10^{23}}$$

= $-6.66 \times 10^{34} \times 3 \times 10^8 \times \left(\frac{1}{\lambda}\right)$

$$\mathbf{So} \quad \frac{1}{\lambda} = -8.738$$

$$\mathbf{So} \quad \left[\text{CFSE} = -8738 \text{ cm}^{-1} \right]$$

113. (b) : Rate constant is increased by the factor of 10.6 so $K_2 = K_1 \times 10.6$ or

$$\frac{K_2}{K_1} = 10.6$$

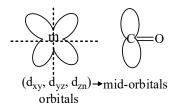
So from Arheneus equation

114. (c)
$$Ag_2CrO_4 \rightleftharpoons 2Ag^+ + CrO_4^{2-}$$

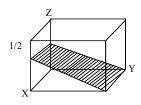
$$(2s) \qquad (s)$$

$$K_{SP} = (2S)^2 \times (S) \rightarrow 4S^3$$

$$\therefore M = 1.5 \times 10^{-4} \text{ mol } L^{-1}$$


$$(C) = \frac{1.5 \times 10^{-4}}{2} \left\{ \text{gm eq. } L^{-1} \right\}$$

$$K_{sp} = 4 \times \left(\frac{1.5 \times 10^{-4}}{2} \right) = \frac{13.500 \times 10^{-12}}{8}$$


$$\left[K_{sp} = 1.68 \times 10^{-12} \right]$$

- 115. (b) Due to very harness → Quartz has the property of Lowespansion.
- 116. (d)
- 117. (d) Symmetrical electronic configuration \rightarrow No John-Teller distortion occur (t_{2g} and eg half filled or full filled)
- Example: $t_{2g}^{3} eg > t_{2g}^{3} eg^{2} > t_{2g}^{6} eg^{2}$ etc. Unsymmetrical electronic configuration \rightarrow John-Teller distortion occur (t_{2g} and eg partially filled)
- $$\begin{split} \textbf{Example:} & \ t_{2g}^{\ 2} eg > t_{2g}^{\ 3} eg^1 > t_{2g}^{\ 6} eg^3 \ etc. \\ & \ Cr^{+3}(d^3) \quad Cr^{+4}(d^2) \quad Fe^{+3}(d^5) \quad Ni^{+2}(d^{10}) \\ & \quad A- \quad AA \quad A \\ & \ No \ JTD \quad JTD \quad No \ JTD \quad No \ JTD \\ & \ present \end{split}$$

118. (a) Basic bonding of D-electrons \rightarrow

- 119. (d) Anonium ions replace silicon ion and silicon dioxide → are called
- **120.** (d) Zeohtes

ZIncept ∞ 1

1/2

Reciprocal 0 1

2

miller indiceis (0, 1, 2)

- 121. (d) Range of oxidation state of Nitrogen in its oxide → +1 to +5
 Eg:- N₂O₅ → has O.S. = +5
 N₂O → has O.S. → +1
- 122. (b) Popular oxoacid of sulphur $\rightarrow H_2SO_4$
- 123. (c) Olium \rightarrow H₂S₂O₇

∴ so It has the basisty of '2'.

124. (c) Polarising power of cation (+ve) $\mu \frac{1}{\text{(size of cation)}}$

and

$$\left[\begin{array}{c} \text{Polarising power of cation} \\ \text{Negative} \end{array} \right]$$

Polarising power ∞ magnitute of of cation positive charge

125. (c) $\Delta U = q + W \quad : W = +10 \text{ (compression)}$ $q = -2\{\because escaping\}$

So
$$[\Delta U = -2 + 10 = 8 \text{ kJ}]$$